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summary: The tricyclic ester 1 was transformed by a sequence of intramolecular 
Michael and alkylation reactions into the pentacyclic lactone 10 from which the (+)- 
15-desoxy derivatives of longikaurin C 2 and effusin 4 were then prepared. 

In the preceding Letter’ we outlined a strategy for 

diterpenes2 longikaurin C 23 and effusin 44, and described 

which was envisaged as a key intermediate in the synthesis 

transformation of 1 into the 15-desoxy derivatives 3 and 5 

products 2 and 4, respectively. 12 

the total synthesis of the Rabdosia 

the preparation of the ester 1, 

plan. We now report the 

corresponding to the natural 

1 
AcO 

/ ‘9 OH 2 R&J 4 R=O 
3 R=H, 5 R=H, 

The kaurane skeleton (apart from the C(17) methylene group) was completed as indicated 

in the first part of the Scheme. Thus, 1 was reduced by “Red-Al” and the crude product 

subjected to an acid-catalysed g-elimination process, affording enone 6. 596 In a variation 

of the intramolecular Michael reaction which had proven to be so effective in the synthesis of 

gibberellins,7 the derived propionate 7 was cyclised to a 3:l mixture of lactonea 8, m.p. 

92-93’ and 126.5-127.5’C, respectively. The mixture was converted to the composite bromide 

9 which was treated with LDA to effect C(3)-C(4) bond formation and then the C(7) carbonyl 

group reconstituted to afford the homogeneous 0x0 lactone 10, m.p. 146-147.5’C. 6R- 

Hydroxylation was then effected by osmium tetroxide oxidation8 of the derived t- 

butyldimethylsilyl (TBS) enol ether9 to give 11 , m.p. 145-146OC, but in view of the need to 

mask the new hydroxylto during subsequent transformations. treatment of enol ether 11 by per- 

acid was also examined. In the event, this procedure afforded 12 more directly and 

efficiently.11 

3927 



3928 

1 

I d 60% 

AcO i 15 ,,i 140TBDMS 

ial Na Al(OCHZCH20Me)2H2(3.5 equiv), PhMe, 25'C, lh. (bl pMePhS03H, PhH, ZS'C, lh. 

(cl (EtCO),O, Py, DMAP, 25'C, 5h. (d) KH(1.2 equiv), DMF, -30°C, 2h. lel NaB(CN)H3, 

MeOH, O.Sh. (fl t-BuSiMe20S02CF3(1.5 equiv), 2,6-lutidine(2 equiv), CZCH2CH Cl, 25*C, 

10 min. (g) Me2CHCH(Me12BH2(3 equivl, diglyme, O'C, 10 min; 2S°C, lh; Me J O-, lOO"C, 3h. 

Ihl Ph3P(2.2 equivl, CBr(l.1 equiv), Py. (i) LDA (1.4 equiv), THF, -2O"C, O.Sh. 

Ij) Bu4fiF- 16 equivl, THF, 25'C, 5h. Ikl (PyHI2&207(3.0 equivl, CH2C12, ZS"C, 16h. 

(1) t-BuSiMe20S02CF3(1.5 equivl, Et3N, ZS"C, 12h. (ml O~O~(0.05 equivl, N-methylmorpholine 

N-oxide (4 equivl, t-BuOH, H20, 25'C, 1Oh. (nl mCZPhCO$Cl.Z equivl, CH2C12, ZS"C, 30 tin. 

(al t-BuSiMe20S02CF3(4 equivl, iPr2NEtll.S equivl, DMAP(catalytic), ClCH2CH2Cl, 25OC, 6h. 

(pl KOH, MeOH, 25OC, lh. (q) CH2N2, Et20. (r) LiAlH4(0.7 equivl, THF, (filtered solution), 

25OC, 2h. (s) Ac20, Py. (tl Me2BBrlZ equiv), Et3N, -?8OC, 5 min. (u) Ph>MeBp-, iAmOK, 

PhMe, 25OC, 0.5h. (vl as for j, but 10 min. Iwl H5Z06, Et20, 10 min. 
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We hoped that hydrolysis of the lactone function in 12 would lead to formation of a 

20+7 hemiacetal, and spectroscopic examination of the product, m.p. 145-146’C, (following 

diazomethane treatment) indicated that this had indeed occurred: 13C-NMR spectra were 

compatible with the loss of the C(7) carbonyl function (6 209.9) and it3 replacement by an 

acetal carbon (6 97.6). The ‘H-methine resonance from H(6) which had been observed as a 

doublet (J-8.6Hz) in 11 and 12 (G trans-diaxial coupling and therefore commensurate with a 

6B-oxygen substituent) non gave rise to a doublet with J=4Hz, &. consistent with a boat 

conformation for ring 8. Although the value of 4Hz was rather smaller than that reported for 

longikaurin C 23 and its congeners 2 (6-7Hz), it seemed reasonable that the discrepancy was due 

to torsional differences arising from hydrogen bonding with the C(15) carbonyl function in the 

latter compounds: 4Hz coupling constants have been reported for derivatives more closely 

analogous to our synthetic intermediate.’ 2 Formation of the hemi-acetal 13 was finally 

confirmed by single crystal X-ray analysis (Figure 11, which also established that the earlier 

stereochemical assignments at C(5), C(9), C(10) had been made correctly.‘3 

Figure 1 

Ortep plot of ester 13 

(50% probability) 

Reduction of the methoxycarbonyl group by lithium aluminum hydride and acetylation gave 

acetate 14, m.p. 152.5-153.5’C. The recently reported procedure for the removal of 

methoxymethyl groups with dimethylbromoborane ‘li then enabled us to unmask the C(17) hydroxyl 

in the presence of the ~(6) TBDMS ether. Oxidation of the product to the C(17) ketone 15, 

m.p. 207-209OC, followed by Wittig methylenation gave 15 which was desilylated to afford a 

product, m.p. 200-201°C whose spectroscopic constants (MS, HRMS, IR, and NMR) were fully 

consistent with structure 3.16 Further evidence for the structural assignment was obtained 

by periodate induced cleavage to an aldehyde, m.p. 118-119.S°C, (6 9.69, d, J=4Hz), the 

spectra of which were in agreement with structure 5.‘7 The introduction of a C(15) carbonyl 

group into 3 or 5 by procedures18 which we have been able to apply satisfactorily to 

gibberellins and kaurenoic acid, has not yet been realised. however. We expect 

the successful resolution of this remaining problem in the full paper describing 

synthetic endeavour. 
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